

Material Compatibility in the Canmaking Process

G. Macfarlane
Member of the Board of Directors,
Böttcher Group
Euro CanTech 2016
Berlin

The Böttcher Group

- ► Founded in 1725
- Worldwide no.1 in roller coverings/printing chemicals
- ▶ 135 years experience in roller manufacturing
- 23 production plants in 17 countries
- ≥ 230 million € turnover
- ▶ 1900 employees

Chemical and Physical Properties of Elastomer Covered Rollers

Swell/Shrink Mechanism

When an elastomer roller covering comes into contact with a chemical medium (e.g. ink, wash), 2 processes take place:

Substances leach into the elastomer matrix

Plasticisers are extracted from the matrix

Both processes are <u>always</u> present. Their effects depend on:

- Temperature
- Time (length of exposure)
- Nature of the medium
- Characteristics of the elastomer compound

Roller Swell/Shrinkage: Lab samples after test

Conclusions

- Roller swelling
 - is normally temporary and reversible

- Roller shrinkage
 - is cumulative and irreversible

Case Study 1: Coating Cylinder Coverings in 3-piece Canmaking

Systems Packaging Swell Rates (1 Day) Diverse Compounds/Coatings

Systems Packaging Swell Rates (7 Days) Diverse Compounds/Coatings

Swell Rates After 1/7/8/10 Days White Lacquer

Food Can Plant Swell Rates (1/7/8 Days)

Best/Worst in Class Coatings (Minimum/Maximum Swell)

Case Study 2: Inker Rollers in 2-piece Canmaking

Roller Swell ("Cigar Effect")

Shoulders of rubber covering not exposed continuously to fresh ink, often "sealed" by dry ink, dust etc., therefore less swelling at the ends.

Roller Swell ("Cigar Effect")

Effects of Roller Swell: Dynamic Overload

Beverage Can Plant, Germany

Beverage Can Plant, Poland

Beverage Can Plant, Poland Long-term Stability

Beverage Can Plant, UK Steel/Aluminium Cans

Roller Swelling with Competitive Rollers

Tests carried out at plant in Germany, original comments from maintenance manager.

Roller stripes show signs of swellling within 1 week

Rollers had to be set harder, danger of blowing up

Roller Stripes with 735 60 after Three Months

Böttcher form rollers show almost no signs of wear after three months

Viscosity of Can Decorating Inks in Relation to Temperature

Influence of press speed and roller temperature

Press speed [m/s]	Ink mist volume [mg]	Roller temperature [℃]
5	6	23
10	38	26
15	92	31
15 warm start	266	43

10 m/s 26°C 38 mg

15 m/s 31°C 92 mg

5 m/s 23°C 6 mg

15 m/s 43°C 266 mg

Results with Different Roller Compounds

Parameters: 15 m/s

Warm start

Compound	Ink mist volume [mg]	Roller temperature [℃]
311 35	190	40
304 35	240	43
374 35	335	44

Summary

- In both 3-piece and 2-piece canmaking, material compatibility is a vital factor in determining quality and productivity
- Ignore it, and higher waste and downtime can ensue
- Work with your suppliers to analyse and optimise it, and you will be rewarded with more stable processes and results

